Subscribe to DSC Newsletter

Python for Data Analysis

Agile Tools for Real World Data

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.

Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It’s ideal for analysts new to Python and for Python programmers new to scientific computing.

  • Use the IPython interactive shell as your primary development environment
  • Learn basic and advanced NumPy (Numerical Python) features
  • Get started with data analysis tools in the pandas library
  • Use high-performance tools to load, clean, transform, merge, and reshape data
  • Create scatter plots and static or interactive visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Measure data by points in time, whether it’s specific instances, fixed periods, or intervals
  • Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed

Buy.


Data Analysis with Open Source Tools

A hands-on guide for programmers and data scientists

Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.

Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.

  • Use graphics to describe data with one, two, or dozens of variables
  • Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments
  • Mine data with computationally intensive methods such as simulation and clustering
  • Make your conclusions understandable through reports, dashboards, and other metrics programs
  • Understand financial calculations, including the time-value of money
  • Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations
  • Become familiar with different open source programming environments for data analysis

"Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla

"An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

Buy.


Related articles:

 

Views: 3178

On Data Science Central

© 2019   AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service