A Markov Chain is a random process, where we assume the previous state(s) hold sufficient predictive power in predicting the next state. Unlike flipping a coin, these events are dependent. It’s easier to understand through an example.…
A Data Science Central Community
Most people (including myself) are drawn to Julia by its lofty goals. Speed of C, statistical packages of R, and ease of Python?—it sounds two good to be true. However, I haven't seen anyone who has looked into it say the developers behind the language aren't on track to accomplish these goals.…
ContinueAdded by Alex Woods on August 23, 2015 at 4:30pm — No Comments
A Markov Chain is a random process, where we assume the previous state(s) hold sufficient predictive power in predicting the next state. Unlike flipping a coin, these events are dependent. It’s easier to understand through an example.…
Added by Alex Woods on August 4, 2015 at 8:00pm — No Comments
I’m going to keep this tutorial light on math, because the goal is just to give a general understanding.
The idea of Monte Carlo methods is this—generate some random samples for some random variable of interest, then use these samples to compute values you’re interested in.
I know, super broad. The truth is Monte Carlo has a ton of different applications. It’s…
ContinueAdded by Alex Woods on July 25, 2015 at 6:00pm — 5 Comments
Linear regression is one of the first things you should try if you’re modeling a linear relationship (actually, non-linear relationships too!). It’s fairly simple, and probably the first thing to learn when tackling machine learning.
At first, linear regression shows up just as a simple equation for a line. In machine learning, the weights are usually represented by a vector θ (in statistics they’re often represented…
ContinueAdded by Alex Woods on July 19, 2015 at 8:31am — 1 Comment
It’s important to know what goes on inside a machine learning algorithm. But it’s hard. There is some pretty intense math happening, much of which is linear algebra. When I took Andrew Ng’s course on machine learning, I found the hardest part was the linear…
ContinueAdded by Alex Woods on July 10, 2015 at 10:30pm — No Comments
Random Forest is a machine learning algorithm used for classification, regression, and feature selection. It's an ensemble technique, meaning it combines the output of one weaker technique in order to get a stronger result.
The weaker technique in this case is a decision tree. Decision trees work by splitting the and re-splitting the data by…
ContinueAdded by Alex Woods on July 4, 2015 at 8:30am — No Comments
When you're cleaning up data, you usually end up using a 5-8 functions a ton of times, and then a few more once or twice. Here are those 5-8 functions I find myself using again and again.
Here is a quick overview:
names() - returns the column names of a dateset…
ContinueAdded by Alex Woods on July 4, 2015 at 8:00am — No Comments
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles