A Data Science Central Community
Matthew S. Shotwell and Elizabeth H. Slate
Abstract.
We introduce a Bayesian inference mechanism for outlier detection using the augmented Dirichlet process mixture. Outliers are detected by forming a maximum a posteriori (MAP) estimate of the data partition. Observations that comprise small or singleton clusters in the estimated partition are considered outliers. We offer a novel interpretation of the Dirichlet process precision parameter, and demonstrate its utility in outlier detection problems. The precision parameter is used to form an outlier detection criterion based on the Bayes factor for an
outlier partition versus a class of partitions with fewer or no outliers. We further introduce a computational method for MAP estimation that is free of posterior sampling, and guaranteed to find a MAP estimate in finite time. The novel methods are compared with several established strategies in a yeast microarray time
series.
http://ba.stat.cmu.edu/journal/2011/vol06/issue04/shotwell.pdf
Comment
It seems the link to the pdf document is reaching a non-existing document
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of AnalyticBridge to add comments!
Join AnalyticBridge