A Data Science Central Community

Those of you who visited RCOMM 2011 already know about Radoop , the powerful combination of RapidMiner with Hadoop. This make big data analytics easier then ever. I missed the talk myself (shame on me!) but we had a lot of fruitful discussions afterwards and from my point of view this will become the next RapidMiner revolution. Below you will find some information about the project.

**What is Hadoop?**

Hadoop is is a software framework that supports data-intensive distributed applications. It is based on Google now well-known map & reduce paradigm which makes it an excellent tool for analyzing large data sets. In principle, Hadoop is able to work with thousands of computing nodes on petabytes of data.

**What about Hive and Mahout?**

Hive is a data warehouse infrastructure built on top of Hadoop, i.e. it uses the distributed file system of Hadoop and the efficient access technologies. Hive was initially developed by Facebook and is now used and developed by many other companies for their distributed data warehouse.

Mahout is a machine learning library already offering many scalable machine learning libraries implemented as well on top of Hadoop and its map & reduce paradigm. Hence, Mahout is one of the first distributed data analytics framework making use of the power of Hadoop.

You will see below that both frameworks will be tightly integrated with RapidMiner.

**What can RapidMiner bring into the game?**

Hadoop is great for large scale analytics, but it lacks an easy-to-use graphical interface. RapidMiner is an excellent tool for data analytics, but unless the analyst is not performing some nasty tricks, the data size is limited by the memory available. So we have the algorithms, the support for analytical process design, the user interface, and of course the community with a demand for large-scale analytics.

**RapidMiner + Hadoop = Radoop**

Radoop combines the strengths of RapidMiner and Hadoop. The result is a RapidMiner extension for editing and running ETL, data analytics and machine learning processes over Hadoop. The developers have closely integrated the highly optimized data analytics capabilities of Hive and Mahout, and the user-friendly interface of RapidMiner to form a powerful and easy-to-use data analytics solution for Hadoop.

Here is the presentation of Zoltán Prekopcsák which he made at the RCOMM 2011:

Right now, a restricted beta phase has started and you can apply for it at http://radoop.eu/ . More information about Radoop can be found at http://blog.radoop.eu/.

For details, visit click here

© 2019 AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge