A Data Science Central Community
ADaBoost.M1 tries to improve step by step the accuracy of the classifier analyzing its behavior on training set. (Of course you cannot try to improve the classifier working with the test set!!).
Here lays the problem, because if we choose as "weak algorithm" an SVM, we know that almost always it returns excellent accuracy on the training set with results closed to 100% (in term of true positive).
In this scenario, try to improve the accuracy of classifier assigning different weights to the training set doesn't work!
The idea of AdaBoost.M1 is still valid also with SVM classifiers, but I noticed that instead of to improve step by step the single SVM classifier, we can train different SVM classifiers (with different parameters) and assign the score to each classifier based on the error committed on a part of the training set not used to train the SVM.
Let me explain better the procedure:
As you can notice, the method basically assigns to the k classifiers a "trustability score".
...click here to read all post.
Precision/Recall for the four weak classifier
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of AnalyticBridge to add comments!
Join AnalyticBridge