A Data Science Central Community
Hadoop has become the de facto standard in the research and industry uses of small and large-scale MapReduce. Since its inception, an entire ecosystem has been built around it including conferences (Hadoop World, Hadoop Summit), books, training, and commercial distributions (Cloudera, Hortonworks, MapR) with support. Several projects that integrate with Hadoop have been released from the Apache incubator and are designed for certain use cases:
Hadoop is meant to be modeled after Google MapReduce. To store and process huge amounts of data, we typically need several machines in some cluster configuration. A distributed filesystem (HDFS for Hadoop) uses space across a cluster to store data so that it appears to be in a contiguous volume and provides redundancy to prevent data loss. The distributed filesystem also allows data collectors to dump data into HDFS so that it is already prime for use with MapReduce. A Data Scientist or Software Engineer then writes a Hadoop MapReduce job.
As a review, the Hadoop job consists of two main steps, a map step and a reduce step. There may optionally be other steps before the map phase or between the map and reduce phases. The map step reads in a bunch of data, does something to it, and emits a series of key-value pairs. One can think of the map phase as a partitioner. In text mining, the map phase is where most parsing and cleaning is performed. The output of the mappers is sorted and then fed into a series of reducers. The reduce step takes the key value pairs and computes some aggregate (reduced) set of data such as a sum, average, etc. The trivial word count exercise starts with a map phase where text is parsed and a key-value pair is emitted: a word, followed by the number “1″ indicating that the key-value pair represents 1 instance of the word. The user might also emit something to coerce Hadoop into passing data into different reducers. The words and 1s are sorted and passed to the reducers. The reducers take like key-value pairs and compute the number of times the word appears in the original input.
After working extensively with (Vanilla) Hadoop professional for the past 6 months, and at home for research, I have found several nagging issues with Hadoop that have convinced me to look elsewhere for everyday use and certain applications. For these applications, the though of writing a Hadoop job makes me take a deep breath. Before I continue, I will say that I still love Hadoop and the community.
Hadoop will be around for a long time, and for good reason. MapReduce cannot solve every problem (fact), and Hadoop can solve even fewer problems (opinion?). After dealing with some of the innards of Hadoop, I’ve often said to myself “there must be a better way.” For large corporations that routinely crunch large amounts of data using MapReduce, Hadoop is still a great choice. For research, experimentation, and everyday data munging, one of these other frameworks may be better if the advantages of HDFS are not necessarily imperative:
BashReduce
Unlike Hadoop, BashReduce is just a script! BashReduce implements MapReduce for standard Unix commands such as sort, awk, grep, join etc. It supports mapping/partitioning, reducing, and merging. The developers note that BashReduce “sort of” handles task coordination and a distributed file system. In my opinion, these are strengths rather than weaknesses. There is actually no task coordination as a master process simply fires off jobs and data. There is also no distributed file system at all, but BashReduce will distribute files to worker machines. Of course, without a distributed file system there is a lack of fault-tolerance among other things.
Read full articles and comments at http://www.bytemining.com/2011/08/hadoop-fatigue-alternatives-to-ha...
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of AnalyticBridge to add comments!
Join AnalyticBridge