Subscribe to DSC Newsletter

Jure Leskovec on "The Web as a Laboratory for Studying Humanity" at SFBay ACM DMSIG

WATCH THE VIDEO ON YOUTUBE:

 

https://www.youtube.com/watch?v=FrZyHlxfGMU

 

Event Details

http://www.sfbayacm.org/event/dmsig-1024-jure-leskovec-web-laborato...

With an increasing amount of social interaction taking place in on-line settings, we are accumulating massive amounts of data about phenomena that were once essentially invisible to us: the collective behavior and social interactions of hundreds of millions of people. Analyzing this massive data computationally offers enormous potential both to address long-standing scientific questions, and also to harness and inform the design of future social computing applications: What are emerging ideas and trends? How is information being created, how it flows and mutates as it is passed from a node to node like an epidemic? How will a community or a social network evolve in the future? We discuss how computational perspective can be applied to questions involving structure of online networks and the dynamics of information flows through such networks, including analysis of massive data as well as mathematical models that seek to abstract some of the underlying phenomena.   

Speaker Bio

Jure Leskovec (http://cs.stanford.edu/~jure) is an assistant professor of Computer Science at Stanford University where he is a member of the Info Lab and the AI Lab. His research focuses on mining and modeling large social and information networks, their evolution, and diffusion of information and influence over them. Problems he investigates are motivated by large scale data, the Web and on-line media. He received six best paper awards, a ACM KDD dissertation award, Microsoft Research Faculty Fellowship and appeared on IEEE Intelligent Systems magazine "AI's 10 to Watch". Jure also holds three patents. Before joining Stanford Jure spent a year as a postdoctoral researcher at Cornell University. He completed his Ph.D. in computer science at Carnegie Mellon University in 2008. Jure has authored the Stanford Network Analysis Platform (SNAP), a general purpose network analysis and graph mining library that easily scales to massive networks with hundreds of millions of nodes, and billions of edges.

Views: 274

Tags: ACM, Data, Machine, Mining, learning

Comment

You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge

On Data Science Central

© 2019   AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service