A Data Science Central Community

**Model Deployment**

I have built a model that scores 99.9% accuracy! Great! Fantastic!**Now what?**

This is what a colleague of mine calls the "Now what?" effect. After training, testing, and optimizing a model repeatedly, we get this fantastic performance on the evaluation set. Now it is the time to put your model to good use on real life, maybe streaming, data. This phase is called **Model Deployment**.

Usually, a deployment-dedicated workflow reads the incoming new data, applies the previously trained, evaluated, and optimized model, and produces the expected response. **An example: Churn Prediction**

In churn prediction, we train a model to predict the probability of each customer to churn, based on its demographics, habits, loyalty, and general history with the company and company's products. We then have this great model sitting somewhere on our machines.

Now, a customer calls the call center for whatever reason. The agent pulls off his/her data from the database, adds a few information that the customer is giving during the call, and presses a button to activate the deployment workflow.

The deployment workflow reads the customer's data, integrates them with the current call's data, interrogates the model and produces the likelihood that this customer has to churn, in the shape of a score. Based on this score, the agent follows a different path in customer support.

**PMML in Deployment**

An advice for best practice in the implementation of deployment workflows is the adoption of PMML models. In this case, you just need a PMML Predictor or a JPMML Classifier node to interrogate the model, whatever model. Indeed a PMML interpreter node is capable of identifying the model type and call the appropriate predictor.

In KNIME, if you use a PMML Predictor node (or a JPMML CLassifier node) in the deployment workflow, you do not need to update the workflow, every time the model changes. Indeed, if for the past month you have used a decision tree and you now want to switch to a neural network, a deployment model using a PMML interpreter does not need any update.

In addition, if have trained a PMML model you can deploy it on any platform, provided that a PMML interpreter is available!

© 2019 AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge