A Data Science Central Community

*Originally posted on sctr7.com. *

Network analysis is a rapidly growing analytics domain propelled by the explosion of interest in social networking. The methods rest upon much older foundations in the realms of statistics and social science. Euler’s graph theory was proposed in the early 18^{th} century and Moreno established the foundations for social network analysis (SNA) in the 1930’s.

One of the exciting aspects of network analysis is the ability to generate elaborate and insightful visualizations. Indeed this can be a valuable tool for discovery and pattern identification. Open source social network analysis tools such as Gephi and commercial tools from SAS and SAP are available to guide inquiries.

As an example, working with Gephi, I downloaded and generated a detailed visualization of pre-collapse Enron “to-and-from” email patterns. Inside Gephi, the visualization is interactive, allowing drill-down and zoom-out navigation to examine particular clusters and other structures associated with organizational communication patterns (*see Figure 1*). This ability can be quite useful toward identifying key players in a discovery initiative or forensics investigation – quickly identifying who to interview and where to seek additional information.

However, going back to the roots of network analysis in mathematics and sociology, there are also formal statistical measures available from network structures. A key message is that network analytics is more than fancy visualization. Graph mathematics and social network analysis (SNA) provide insightful statistical measures of networks. Resulting measures can supplement and enhance visualizations. As well, statistical measures can be used as formal components in data analytics and machine learning approaches.

For example, in the above network representation of Enron email exchanges, standard quantitative statistical measures can be derived, for instance:

- centrality (identification of the level of relative importance of kety nodes),
- density (how 'tight' the network is overall),
- modularity (degree to which network is separated in clusters),
- bridge (nodes which occupy shortest or only route connecting parts of network), and
- propinquity (measure of tendency of similar or co-located nodes to link).

In another example, in a fraud investigation, fraud risk can be more heavily weighted when co-participants in a network (in aggregate) all have high risk scores. In other words, a ‘transaction chain’ involving several participants can be flagged for potential fraud based on an aggregate score involving all participants in the chain. As well, particular transaction patterns can be identified as suspicious based on a ‘library’ of fraud transaction patterns. As an example, cross-border carousel tax fraud can be described as a specific network pattern and flagged when detected in a large dataset of transactions (*see Figure 2*).

*Figure 2: Representation of a cross-border tax fraud pattern as a network chain*

By the same account, statistical measures can be helpful to delve into ‘deep structure’ – to identify factors and patterns not apparent to the naked eye. As an example, ‘hidden’ but influential participants in a network can be detected via standard statistical graph measures such as eigenvector centrality.

In summary, network analysis goes beyond compelling visualizations. There are a rich set of statistical measures to be gleaned from graph statistics and social network analysis methods.

Here are some resources for those interested to learn more:

- Overview and demonstration of semantic analytics (RSM Erasmus lecture): https://www.youtube.com/watch?v=-1yxe0XjLWg
- Blog posting on network analytics for fraud detection: http://sctr7.com/2014/06/27/the-cutting-edge-network-analytics-for-...
- Computer network security threat / impact analysis (via graph database analysis): http://linkurio.us/network-management-and-impact-analysis-with-neo4j/

© 2019 AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge