A Data Science Central Community

The impact of a change of scale, for instance using years instead of days as the unit of measurement for one variable in a clustering problem, can be dramatic. It can result in a totally different cluster structure. Frequently, this is not a desirable property, yet it is rarely mentioned in textbooks. I think all clustering software should state in their user guide, that the algorithm is sensitive to scale.

We illustrate the problem here, and propose a scale-invariant methodology for clustering. It applies to all clustering algorithms, as it consists of normalizing the observations before classifying the data points. It is not a magic solution, and it has its own drawbacks as we will see. In the case of linear regression, there is indeed no problem, and this is one of the few strengths of this technique.

**Scale-invariant clustering**

The problem may not be noticeable at first glance, especially in Excel, as charts are by default always re-scaled in spreadsheets (or when using charts in R or Python, for that matter). For simplicity, we consider here two clusters, see figure below.

*Original data (left), X-axis re-scaled (middle), scale-invariant clustering (right)*

The middle chart is obtained after re-scaling the X-axis, and as a result, the two-clusters structure is lost. Or maybe it is the one on the left-hand side that is wrong. Or both. Astute journalists and even researchers actually exploit this issue to present misleading, usually politically motivated, analyses. Students working on a clustering problem might not even be aware of the issue.

Read the full article here.

© 2020 AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge