A Data Science Central Community

We discuss a new approach for selecting features from a large set of features, in an unsupervised machine learning framework. In supervised learning such as linear regression or supervised clustering, it is possible to test the predicting power of a set of features (also called independent variables by statisticians, or predictors) using metrics such as goodness of fit with the response (the dependent variable), for instance using the R-squared coefficient. This makes the process of feature selection rather easy.

Here this is not feasible. The context could be pure clustering, with no training sets available, for instance in a fraud detection problem. We are also dealing with discrete and continuous variables, possibly including dummy variables that represent categories, such as gender. We assume that no simple statistical model explains the data, so the framework here is model-free, data-driven. In this context, traditional methods are based on information theory metrics to determine which subset of features brings the largest amount of information.

A classic approach consists of identifying the most information-rich feature, and then grow the set of selected features by adding new ones that maximize some criterion. There are many variants to this approach, for instance adding more than one feature at a time, or removing some features during the iterative feature selection algorithm. The search for an optimal solution to this combinatorial problem is not computationally feasible if the number of features is large, so an approximate solution (local optimum) is usually acceptable, and accurate enough for business purposes.

**Content of this article**:

- Review of popular methods
- New, simple idea for feature selection
- Testing on a dataset with known theoretical entropy (and conclusions)

Read the full article, here.

© 2019 AnalyticBridge.com is a subsidiary and dedicated channel of Data Science Central LLC Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of AnalyticBridge to add comments!

Join AnalyticBridge